Statistical Methods for Overdispersion in mRNA-Seq Count Data
نویسندگان
چکیده
Recent developments in Next-Generation Sequencing (NGS) technologies have opened doors for ultra high throughput sequencing mRNA (mRNA-seq) of the whole transcriptome. mRNA-seq has enabled researchers to comprehensively search for underlying biological determinants of diseases and ultimately discover novel preventive and therapeutic solutions. Unfortunately, given the complexity of mRNA-seq data, data generation has outgrown current analytical capacity, hindering the pace of research in this area. Thus, there is an urgent need to develop novel statistical methodology that addresses problems related to mRNA-seq data. This review addresses the common challenge of the presence of overdispersion in mRNA count data. We review current methods for modeling overdispersion, such as negative binomial, quasi-likelihood Poisson method, and the two-stage adaptive method; introduce related statistical theories; and discuss their applications to mRNA-seq count data.
منابع مشابه
A comprehensive simulation study on classification of RNA-Seq data
RNA sequencing (RNA-Seq) is a powerful technique for the gene-expression profiling of organisms that uses the capabilities of next-generation sequencing technologies. Developing gene-expression-based classification algorithms is an emerging powerful method for diagnosis, disease classification and monitoring at molecular level, as well as providing potential markers of diseases. Most of the sta...
متن کاملDetecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates.
Next generation sequencing technology provides a powerful tool for measuring gene expression (mRNA) levels in the form of RNA-sequence data. Method development for identifying differentially expressed (DE) genes from RNA-seq data, which frequently includes many low-count integers and can exhibit severe overdispersion relative to Poisson or binomial distributions, is a popular area of ongoing re...
متن کاملUniversal Count Correction for High-Throughput Sequencing
We show that existing RNA-seq, DNase-seq, and ChIP-seq data exhibit overdispersed per-base read count distributions that are not matched to existing computational method assumptions. To compensate for this overdispersion we introduce a nonparametric and universal method for processing per-base sequencing read count data called FIXSEQ. We demonstrate that FIXSEQ substantially improves the perfor...
متن کاملSphinx: modeling transcriptional heterogeneity in single-cell RNA-Seq
The significance of single-cell transcription resides not only in the cumulative expression strength of the cell population but also in its heterogeneity. We propose a new model that improves the detection of changes in the transcriptional heterogeneity pattern of RNA-Seq data using two heterogeneity parameters: ‘burst proportion’ and ‘burst magnitude’, whose changes are validated using RNA-FIS...
متن کاملEstimation of Count Data using Bivariate Negative Binomial Regression Models
Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...
متن کامل